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Abstract

I outline a special theory of defective crystals where the microstructure is represented by fields of lattice vectors and
their spatial derivatives. Since these fields are assumed to be smooth, in the model, it is a central issue to be precise
about the sense in which such fields can represent defects, and that is done by introducing elastic invariant integrals (of
which the most elementary examples are the Biirger’s integrals and the dislocation density).

It turns out that the notion of slip has a natural place in the analysis of these elastic invariant integrals, and moreover
that the formulation invites one to draw results from Cartan’s theory of ‘equivalence’ of vector fields, and also from the
theory of Lie groups. Indeed, it is a remarkable fact that one can identify material points in a crystal that has constant
dislocation density tensor with an appropriate Lie group, as a consequence of which one finds that such crystals have a
self-similarity which generalises the classic idea of generating a perfect crystal (lattice) by translation of a particular unit
cell. Generally, it seems that there is much to be done in adapting known mathematical results to this context. © 2001
Elsevier Science Ltd. All rights reserved.
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1. Introduction

My intention, in this paper, is to describe aspects of a theory of defective crystals which have been
developed in the past few years with Davini, Fonseca and Silhavy. In particular, I shall emphasise relevant
mathematical notions which are not usually employed in a continuum mechanics context: Cartan’s theory
of equivalence, simple ideas involving Lie groups, Thurston’s concept of groups with small generators. For
the most part, I focus on kinematical aspects of the theory, and base the exposition on a simple model of
defective crystals introduced by Davini (1986), wherein smoothly varying lattice vector fields are supposed
to capture relevant averaged geometrical features of the distribution of atoms within a crystal.

The paper begins with a description of the model; three linearly independent vector fields are defined at
each point of a region which represents the current position of material points which make up the body.
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The central notions of elastic deformation (or diffetomorphism) and elastic invariants are introduced. Some
of the elastic invariants are widely known — in this category are the Biirgers integrals and the dislocation
density tensor (which I shall refer to as the classic invariants, in the sequel) — but it is not generally ap-
preciated that there is an infinite number of elastic invariants, with the same properties as the classic in-
variants. Here, one notes the first connection with a mathematical theory that is not usually referred to in
this area — ‘Cartan’s theory of equivalence’ relates to the classification of vector fields with respect to an
equivalence, which places vector fields which are diffeomorphic to one another in the same class. The
‘moving frame’ of the title is just Cartan’s name for the set of vector fields (more precisely, I suppose he
called it the ‘repere mobile’). The invariants that he used in his analysis are the generalisations of the classic
invariants mentioned above, and it is an important result that there is a finite functional basis of such
invariants. One notes that this basis of invariants contains elements other than the Biirgers integrals and
dislocation density tensor. In fact, the specific nature and context of the model that we are interested in
gives more invariants than Cartan derived, or employed, in his work, so that results of his need to be
adapted a little for the specific applications here.

The following question is important: if all elastic invariants match in two crystal states, then how are the
crystal states related? Plainly, the two states may be related elastically, but it turns out that such states may
also be related by slip (where the term slip means a rearrangement of material points in sets where lattice
vector fields are constant, just as one sees in phenomenological theories of plasticity). It seems to me that
this result is a success of the theory; the slip mechanism has an abstract status, which emerges from ideas
that do not anticipate the kinematics of particular types of defects in crystals, so the simple model and
framework that we employ is sufficiently wide to encompass main features of inelastic behaviour.

Aspects of the theory of Lie groups also enter into the considerations, even though that is not generally
realised. This can be seen most simply in the case where the dislocation density tensor is constant in a
particular crystal state. It turns out that, in that case, the lattice vector fields vary in such a manner that
there is an elastic deformation, which maps the vector fields in a neighbourhood of any given point to the
vector fields in an appropriate neighbourhood of any other point in the same state. Thus, the state has a
remarkable self-similarity corresponding to the set of such elastic deformations. (In the case of a perfect
crystal, where the lattice vectors are constant, this particular set of elastic deformations consists of the
translations which map lattice vectors unchanged from one point to another). It is a basic fact of the theory
of Lie groups that one can (locally) reconstruct a Lie group from the corresponding Lie algebra, and that
the Lie algebra is defined by the so-called ‘structure constants’. In this context, the structure constants turn
out to be the components of the dislocation density tensor; the elements of the Lie group are represented by
the material points of the body and the composition function for the group (which effects multiplication of
group elements) turns out to provide the set of elastic deformations, which gives the self-similarity of the
crystal state.

Of course, one needs more than kinematics in a mechanical theory of defective crystals, and one has to
accept that significant dissipation of energy occurs in inelastic deformation. So, the proper setting for an
appropriate theory of inelastic behaviour is undoubtedly thermodynamical, even though a sufficiently
general structure does not exist at the moment, so far as I know. This means that there is a place for simple
treatments of the mechanics, and 1 illustrate such by outlining a variational problem which entirely ignores
the dissipation of energy which is involved in slip. This problem deals with a perfect crystal which can
deform elastically, and can also deform through slip; if one makes logical assumptions regarding the
symmetry of the energy function, then one finds that the infimum of the energy functional is produced by
the limit of piecewise differentiable functions (representing both elastic deformation and slip) with every
increasing numbers of surfaces of discontinuity. The limit functions themselves are nowhere differentiable,
in general, but significant volume averages are well defined. In particular, the average limiting Cauchy stress
tensor is well defined, and one calculates that it is isotropic. If one accepts that, in a perfect crystal, shear
stresses relax by developing sufficiently finely distributed properly oriented shear bands, then this rather
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startling result might have some appeal. Realistically, though one needs to predict a small but finite shear
strength, there is a need to refine the model, and various options are mentioned briefly in the text.

However, one chooses to proceed, to improve the mechanics; one has to concede that real crystals are
never perfect, and so one has to reassess the symmetry assumptions that are used in a prototypical vari-
ational argument (say). To be specific, suppose that the dislocation density tensor is constant, once again,
and ask if there is an analogue of the perfect lattice case where one envisages that atoms of a corresponding
discrete model of the crystal are generated by translation using the constant lattice vectors. In the perfect
lattice case, the symmetries of this discrete set of points (the Bravais lattice) are transferred to the energy
function, so the passage from discrete to continuum models is the assumption that symmetries of relevant
energy functions are transferred in an obvious way between the two levels of description.

There is indeed an analogue of the procedure outlined above, for some defective crystals. Thurston’s
treatment of groups with small generators appears to be relevant. I show, using his results, that for some
choices of dislocation density tensor, an iterative procedure (akin to that which produces a perfect lattice
from one atom by appropriate translations) gives discrete sets of points which have a non-zero minimum
separation. If the lattice vectors are quantities of macroscopic order, then the discrete points so generated
hardly represent the atoms of the crystal. Nevertheless, the discrete set of points obtained in this way
encapsulates some aspect of a discrete structure which underlies the continuum model, and one may pass
from the symmetries of this discrete structure to the symmetries of the continuum model as one tradi-
tionally does for a perfect crystal. This seems reasonable in the absence of any better ideas. Symmetry
assumptions are quite critical, in this area (in the perfect crystal case, the lack of convexity of the variational
problem derives from the symmetry assumptions, and that lack gives minimisers with infinitely fine os-
cillations). So, it seems that the study of the crystallography of defective crystals, by which I mean the
classification of sets of points generated by iteration procedures like the one outlined above, must prefigure
any analysis of corresponding variational problems, or any more realistic thermodynamical treatment of
the continuum mechanics of such crystals.

2. Lattice vectors, elastic deformations

Let a region Q be given and let d,(x), a = 1,2, 3 denote three linearly independent vector fields defined
at each point x € Q. Suppose that 1/n = det{d,(x)} > 0 for all x € Q. We call the set {d,(x)}, the lattice
vector fields at a point x € Q, and call

2 ={d.() @}, L

the state of the crystal. In any state %, the domain Q C R’ is to be a simply connected open set, and the
lattice vector fields are to be smooth, d,(-) € C*(Q, R).

Define
d(x) = Lne™d,(x) N d,(x), (2)
so that
d’(x) - d;(x) = 9, 3)

and call the set {d“(x)}, the dual lattice vector fields at the point x € Q. Thus, the state of the crystal is
specified by three independent lattice vectors d,,, assigned over that region of space 2, occupied by the body.
The lattice vectors are imagined to characterise the behaviour of the crystal on a macroscopic scale, and are
envisaged as an average of vectors which represent interatomic positions. Accordingly, these vectors are
assumed to vary smoothly on the macroscopic scale. Even if defects occur at the atomic scale, so that there
is no recognisable lattice of atoms, it is assumed that these averages are observable at a coarser level. The
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evolution of defects is then supposed to account for the discrepancy between the macroscopic deformation
and the behaviour of the d,.

Definition 1. (i) A state X = {d,(-), Q} is elastically related to a state X* = {d(-), 2"}, if there exists a
diffeomorphism u : Q — Q" = u(Q) such that

d (u(x)) =Vu(x)d,(x), a=12,3 xcQ. (4)
Then, write X* = uX, for brevity.

(ii) A state X = {d,(-), Q} is locally elastically related to a state 2* = {d’(-), 2"}, if for each x, € Q there
exists a diffeomorphism u,,, defined on a neighbourhood N,, of x, in @, with u, (N,) C ", such that

d (uy, (x)) = Vuy, (x)d,(x), a=1,2,3, x €Ny, xo€ Q. (5)

3. Elastic invariants

The elastic deformations defined above occupy a pivotal position in the sequel; also, elastic invariant
integrals which are unchanged by (any) elastic deformation will play an important role.
For any state 2, and each x € Q, let

AV (x) = {d“(x), Vd“(x), VO () a=1,2,3}, (6)

where V) denotes the spatial gradient operator of order r. The elastic invariant integrals will be circuit,
surface and volume integrals of the form

%Cf-dx, /Sg-dS7 /Vth, (7)

where C, S, V are circuits, surfaces and subsets (with vol (V) # 0) of Q, and each of f, g, & has argument
A'(x), for some integer r. The classic example of an elastic invariant integral is Biirger’s integral fc d®-dx
(Kondo, 1955; Bilby, 1960; Kroner, 1960, 1981). Although this integral appears centrally in the theory of
continuous distributions of dislocations, its properties (which are the reasons I focus on it here) are not
generally in evidence. Note that

(@)

-0

G

Let C = C, U C, and choose I', as shown, so that C; UT', C, U (—TI) are closed circuits. Then, it is clear

that
%d”~dx:/d“~dx+/ d“~dx:?{ d“~dx+% d® - dx. (8)
C C C, C\ur C,U(-T)

(i1) Write the transformation law (4) as

d, — Fd,=d;, where F =Vu, 9)
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and check that this implies
d* — F'd" =a", (10)

where F~T is the inverse transpose of F. Under elastic deformation C — y(C) = C* and

f d"*~dy:?{F’Td"-Fdx:j{d"-dx. (11)
c c c

Thus, Biirger’s integral is additive over subregions of Q (in the sense of (i)), and invariant under elastic
deformations (this is (ii)). Now, notice that it is easy to construct an infinite number of elastic invariant
integrals, satisfying analogues of properties (i) and (ii) above. To do this, let v be a real-valued elastic scalar
invariant of order r, so that if X is elastically related to X*, and

AD (") = {d” (x*), Vd“ (x*),...,VVd" (x*); a=1,2,3}, (12)

where x* = u(x) € Q°, then
V(Ag‘}(x*)) = V(A@(x)). (13)

Stated more simply, let v be a real-valued function of the (dual) lattice vectors and their derivatives (up to
order r) which is unchanged in any elastic deformation. One calculates, by differentiation, that if v is such a
scalar, then d,, - Vv is a scalar of order (» + 1). So d, - V(d, - Vv) is a scalar of order (» + 2), and so on. If vis
not constant, then at least one of d, - Vv, a = 1,2, 3, is non-zero, and so on. Generally, one non-constant
scalar function will generate an infinite number of different scalars in this way. Moreover, given any
particular scalar v, it is clear that §.vd” - dx is an elastic invariant integral which satisfies analogues of (i)
and (ii) above. Hence it is sufficient, for a proof of the result quoted, to construct just one scalar which is
generally non-constant. Now, just note that n — (det F) 'n, VA d® — (det F)"'FV A d°, under elastic
deformation, so

b .V a
% is a scalar. (14)
In fact, define
S =d"-VAd (15)

and refer to S /n as the lattice components of the dislocation density tensor. Notice that

j{d“-dx, /S””dV, /ndV (16)
c v v

are elastic invariant integrals, and that the same is true of

7[\)(1"-dx7 /vS‘”’dV7 /vndV (17)
C Vv Vv

provided that v is any scalar. Thus, there is an ‘overabundance’ (cf. Olver, 1995) of elastic invariants, and it
is natural to enquire if any specific invariant, or list of specific invariants, is sufficient to describe the
‘defectiveness’ of the crystal in some sense. This will be the thrust of Sections 4-6, culminating in a proof
that there is a functional basis of invariants, which is sufficient for this purpose.

Some of the integral invariants in Eq. (17) have a topological interpretation, which is not immediately
apparent. I follow Arnol’d (1986) and consider the invariant [, S dV. For simplicity choose a = b = 1, put
d' = d and suppose that V A d is tangential to the boundary of V. (So the analysis applies, for example, if
V A d vanishes outside some subset of V of Q.) Let
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S(d(-)) :/d-V/\ddV. (18)
v

Then,
S(d(-)) =S({d + V¢}()), (19)

where ¢(x) is an arbitrary function for
/V(d+V¢>)-V/\[d+Vq5]dV:/V(d—i-VQS)~V/\ddV:S(d(-))+/VV¢~V/\ddV,

and,
/Vqu-V/\ddV:/VV-{d)V/\d}dV:/quﬁV/\d-dS:O,

where 0V is the boundary of V, since V A d is tangential to V. Now, define

1
) = - g [V A ) AL v (20)
and check that
VAR=VAd. (21)
It follows that n = d + V¢, for some ¢, and so S(d(-)) = S(y(-)). Hence,
// (VAd)(x1) - (VA d)(x2) A I( : )|2dV(x1)dV(x2) (22)
VJV X1 — X3

Now Gauss’ integral formula for the linking number N(C,, C;) of two closed curves
= {xi(t); 1 € [0, T1], x:(0) = x0(T3)}, (23)
where i = 1,2 is
Lot (x1(11) — x2(n2))
N(Cy,Cy) = — X <X (t dty de,. 24
(€, 6) 47’5/0 /o fi(a) XZ(Z)/\|X1(11>—)€2(12) K nen -

This (integer) linking number is the algebraic number of times that one curve passes through a surface
which has the other curve as boundary.
Define dislocation lines C,, C, emanating from given points x,y as

Cr = {xi(t);x; = {VAd}(x)), x,(0) =x, 1, € [0, T1]},

. 25
C, = {XQ(IQ);XQ = {V A\ d}(XQ), xz(O) =y, hE [0, Tz]} ( )
Then,
1
Tll%}l;l'me(C],Cz) (26)

gives the asymptotic linking number of these two curves (which are not closed in general). Moreover, the
integrand in the two expressions (22) and (26) is the same; the right hand side of Eq. (22) is proportional to
the space average of that integrand and the right hand side of Eq. (26) is its time average. It is (Birkhoff’s)
theorem of ergodic theory that the space average of the time average equals the space average, and it
follows that

S(d(-)) is the space integral of the (asymptotic) linking numbers of the dislocation lines. (27)
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So, the invariant integral [, d - V A d dV measures the degree of entanglement of the dislocation lines, or
dislocation loops, in precise fashion.

It is appropriate, here, to give a representation theorem for elastic scalar invariants of order r; see Parry
and Silhavy (1999) for a proof. The result emphasises the importance of the dislocation density tensor.

Theorem 1. v is an elastic scalar invariant of order r if and only if it can be represented in the form
v=v(E"), (28)
where EO = (WD W@ W) and W® | k=1,2,...,r is defined below.
Forr =1, ZW is a collection
Z0 ={z0% ab=1,2,3},
and YO W) are similarly defined collections of YV w)eb respectively, where
zWab . y(Wab . pr(ab . _ S”b/n.
For each r > 1, let further Z") be the collection
Z0 ={z"" . abci,..., ¢ =1,2,3},

and YO, W) similarly defined collections of Y W\ | respectively, where

G Cl...Cp1?
Zie = V2L,
yﬂ(lr')flclzil := the symmetrization with respect to cy,...,c,_; of Zc(l’ ?f’fril,
and
1
b _ b b byl
WD = Y e O 0l ),

The last is the traceless part of Y* in the sense

Cl.Cro]
wan = =,
mey...Ccr—1 Cl...Crpm
That is to say, every scalar can be represented as a function of appropriately symmetrized combinations
of (directional) derivatives of the dislocation density tensor. This result should be useful from the point of
view of constitutive theory, in due course.
Finally, note the following definition:

Definition 2. Let X = {(-), 2} be given, and let the fields S*(-), n(-) be calculated as above. The funda-
mental set & of scalar invariants consists of the fields

{1,‘9:(‘), (dC-V)S:(');a,b,c: 1,2,3}. (29)

This particular set of scalars will be useful when it comes to classifying vector fields which are equivalent
with respect to diffeomorphism.
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4. Neutrally related states

If two crystal states are elastically related, then (by definition) the elastic invariant integrals correspond
in the two states (cf. property (i) of Biirger’s integral). It turns out to be productive to answer the converse
question: if all elastic invariant integrals correspond in two different states, then how are those states re-
lated?

Precisely, if states 2~ = {d,(-),Q}, 2* ={d;(-),Q"} are given, if there exists a C*™ diffeomorphism
u: Q— Q =u(Q) such that

%Cf(m;)(x)) dx = jé(af(A(;B(x*)) ~dx’ (30)

for all elastic invariant line integrals, and with similar requirements for all the invariant surface and volume
integrals, then how are X and X* related to each other? The question can be put in a slightly different form,
to simplify later considerations, by applying the elastic deformation ™! : Q* — Q to the state X*, leaving
the elastic invariant integrals unchanged, mapping circuits u(C) to C, etc., producing a new state
Y =u'2* ={d(-),Q}. Then requirement (30) becomes

fcf(m;)(x)) Sdx = j[Cf(Ag?(x)) dx (31)

and it is necessary and sufficient for Eq. (31) to hold that

VA{F(AV) ) = VAL (a0)}, xeQ (32)

as the circuit C C Q is arbitrary. Eq. (32) and its analogues are to be solved, given X, given the function f
and its analogues, to find the state X'

Note that if 2* = uX, then ¥’ = u~'2* = X, so that solving Eq. (32) and its analogues for states X’ # X
amounts to finding the inelastic deformations which preserve the elastic invariant integrals.

However, it is a fact that if a certain finite number of the (infinite number of) equations analogous to
Eq. (32) is satisfied, then all (the infinite number of) such equations are satisfied. The proof of this fact
is outlined later. The following definition selects a finite number of conditions analogous to Eq. (32) and is
motivated by this last result.

Definition 3. States X,X" are neutrally related to one another if VA (d‘—d”)=0, wn=vn,
VoA (d —d") =0, ve 7, where V(x):= v(Af;) (x)).

One should note that some of the invariants used for Definition 3 explicitly involve gradients of the
dislocation density tensor, e.g. §.{(d, - V)(S”/n)}d® - dx is an elastic invariant with density listed in Eq.
(29). The list that is given is almost certainly not optimal (in that shorter lists may be sufficient for later
results), but it is known that invariants other than the classic invariants must be involved (Section 6).

5. Canonical states

There are geometrical compatibility conditions on states X such that there exists X’ # X neutrally related
to 2. Such states may be put in canonical form by using appropriate elastic deformations. To get the flavour
of this, consider the simple example where V A d“ = 0 for each a. Then, there exist potentials t* such that
d* = V1°, and if one puts © = (¢!, 7%, %) then det(Vz) # 0 by the linear independence of the lattice vectors.

So 12 = {e,,7(Q)}, where {e, e,, e} is the canonical Cartesian basis of R®. That is, the lattice vector fields
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are ‘straightened out’ using the potentials {t!, 7% 7°}, and one recovers the continuum analogue of the
perfect crystal lattice, in this case. States neutrally related to t2 are then easily obtained from VA d” =
0, det(d”) = 1: this implies that d* = Vv for some potentials v, and if v = (v!,v?,v?), then det(Vv) = 1. If
one superimposes an elastic deformation u : ©(Q) — u - ©(Q), the dual lattice vector becomes (Va) Vv,
the corresponding state becomes (u-7)2 = {d;(-), u-(Q)} with

d' (u(y)) = Va(y)[Vv(p)] ‘e, where det(Vv) =1, y € 1(Q). (33)

This is a representation of lattice vectors in states elastically related to states neutrally related to z2. One
can interpret this representation in a different way: suppose that material points in T2 are rearranged in the
sense that lattice vectors are transported unchanged, as points x € 7(Q) are moved to v(x) € v(z(Q)). Thus,
a state ¥ = {ﬁa(-), v(z(Q)) ¢ is produced by rearrangement of tX, where

d,(v(y) = d,(y) = e,, det(Vv) =1, ye(Q). (34)
A further elastic deformation of 2, through the diffeomorphism u - v-', gives lattice vectors £,(u - v-'(v(y))),
defined by

L (u(y) = [V -v )] () d(v(y)) = V() (V") (v(p))ea- (35)
Since (Vv 1) (v(y)) = (Vv) "' (»), one sees that

L, (u(y)) =d,; (u(y)), ye(Q). (36)

The state (u - )X is obtained, then, by a rearrangement v, followed by an elastic deformation u - v=!. In the
rearrangement, lattice vectors are transported unchanged, with the material points, whereas in the elastic
deformation, lattice vectors behave as do material line elements. In a suggestive notation, let ' denote the
elastic deformation, t, F, denote the rearrangement v, F> denote the elastic deformation u-v~'. Then
lattice vectors d (-) in state (u-7)X are realised by the sequence of operations

F2-F,-F] (37)

and in this rigorous decomposition F! and F? are truly elastic deformations, F;, “‘simply introduces a change
of shape”. The quote is from Lee (1969), Lee and Liu (1967) (out of context) where the famous “elastic—
plastic”” decomposition

F = FF, (38)

is introduced, based on a thought experiment, which envisages that the body is “cut up into small elements,
and with the removal of the load on the elements, the unstressed state is approached as the element size
approaches zero”.

It is worth emphasising, and reiterating, that Eq. (37) is a rigorous result for this continuum model of a
crystal, obtained for a particular class of inelastic changes of state without recourse to any notion of stress.

Features of this simple example turn out to hold generally: there is a canonical state, which is rearranged
and elastically deformed to produce states elastically related to the neutrally related states, and the rear-
rangement transports material points through sets where the lattice vector fields are constant.

Theorem 2. Suppose that X' is neutrally related to X, and that X' # X. Then either (a) there exists an elastic
deformation with gradient F such that {F~"d"} depends just on a single Cartesian coordinate, x* say; or (b) the
fields {S® /n(-)} are constant and rank {V N d°} = 1, in which case (S /n) = b ® a for some vectors a, b and
an elastic deformation gives dual lattice vectors of the form

d'=e" +b'anxd(r), (39)
where t =aAx-band (1) =L+ L+0+ - = (e — 1 —1) /P
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With the canonical states explicitly given by this last theorem, one can prove (Parry, 1992) that neutrally
related states can be reconstructed, one from the other, by a sequence of unions, divisions, elastic defor-
mations and rearrangements. The essential ingredient of the proof is the observation that, as lattice vectors
may be assumed constant in planes x* = constant, for example, finite slices of crystal (sliced by planes x* =
constant) are elastically related to one another. After subdivision and elastic deformation, then, X and X'
can be reduced to (the same number of) copies of one “small element” of a specific slice. Finally, the re-
arrangement, elastic deformation and union of these small elements reconstructs X’ from X. Again, this is a
rigorous result where the suggestive ideas of Lee and Liu (1967) are prominent (though the result is
obtained without any notion of stress).

6. Neutrally related states are locally elastically related

Given X = {d,(-), Q}, define the classifying manifold T as
T ={(v(x),(d,-V)v(x), (dp-V) (d,-V)v(x)); a,b=1,2,3, veF, xec}. (40)

Then, one of the main results of Cartan’s theory of equivalence, somewhat adapted to this context, is the
following theorem.

Theorem 3. Let X = {d,(-),Q} 2 ={d;(-), 2"} have classifying manifolds T, T*, respectively. Suppose that
T and T* overlap, in the sense that

tuZ(yO) = Uy~ (y;;) for all Uy € {V('), (da : V)V()7 (db : V) (da : V)V(), d,b = 1727 37 Ve 97}
(41)

Sor all (yy,yy) in some neighbourhood of a point (xg, x;) € Q x Q*. Then for any such (xo, x}), there exists a
diffeomorphism u,, defined on a neighbourhood Ny, of xy in Q such that u (x,) = x}, and

d (uy, (x)) = Vuy, (x)d,(x), x € N,,. (42)

That is, if the classifying manifolds overlap, the corresponding states are locally elastically related.

The result was proved, in effect, by brute force consideration of an exhaustive list of special cases in
Davini and Parry (1989, 1991). Olver (1995) gives a proof via a dual version of Frobenius’ theorem, stated
in terms of differential forms.

Theorem 4. Suppose that X and X' are neutrally related. Then X and X' are locally elastically related.

Proof. If 0 € 7, 0(x) = 0'(x), x € Q (from Definition 3). Hence, the classifying manifolds 7,7’ are
identical to each other in this case, and the result follows by the previous theorem (with (x, xj) = (xo, Xo)).

This result allows us to prove that a certain finite list of integrals is a basis for the elastic invariant
integrals. O

Theorem 5. Suppose that X and X' are neutrally related, then all elastic invariant integrals of the form
$o u(x)d*(x)dx, [, u(x)n(x)dV,, where p is a scalar, match in X and X'.

Proof. (a) If 2 and 2’ are neutrally related, then by Theorem 4, given x, € Q, there exists u,, : Ny, — Q
such that u, (xo) = xo and d/ (uy (x)) = Vu,(x)d,(x), x € N,,. Suppose p is a scalar, in that Eq. (13)
holds, then putting x = xy, u = u,, in Eq. (13), one obtains
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w(xo, dy(x0), Vd,(x0),...) = p(xo,d,(x0), Vd. (x0),...), xo€ Q. (43)

(b) Suppose each S /n is constant. Then the classifying manifold of X = {d,(-),Q} is a point, and
choosing 2* = X in Theorem 3 one deduces that if xy, y € €, there exists a diffeomorphism u,, : N, — Q
such that u,,(xo) =y and

do(y, (x)) = Vg, (x)do(x). (44)
Then, putting x = xo, # = u,, in Eq. (13), one obtains
,u(xovda(xo)a Vda(xo),...) ::u( 7da(y)7 Vda(y)a"')v Xo, YV € Q. (45>

That is to say, u(-) is constant in this case.

(c) Suppose that (at least) one of S*/n is non-constant, call it 0. Choose points xy, x; such that
0(xo) = 0(x), and choose X" =2 in Theorem 3. It follows that uy(x9) = us(x;) and hence that
() = u(0().

(d) Finally, since pys(-) = py () from Eq. (43), and n(-) = #'(-) from Definition 3,

pon =g’ and so [ psn(x) 4% = [ (o (x) (46)
4 14
Also, if puy is a constant, then u, is the same constant, by Eq. (43), and so
VA s () (x) = V Ay (x)d (x),

since V A (d° — d) = 0 by Definition 3. If piy is not a constant, then pu = u(z) since = pu(0(-)) by (c) and
0 = 6(z%), see below. Recall that d* — d* = V1. Hence,

VA (px(x)d*(x) = VA (pp (x)d" (x)) = pg(x)V A (d* = d) + VA (@ —d”) =0,

since uy(-) = puy(-) by Eq. (43). Quite generally then, §.usd’dx = §,. pyd” - dx, and this concludes the
proof. [

Notice some straightforward implications of Definition 3. First, d* — d* = Vt* for some potentials 7(x),
not all of them constant. Then, Vv A V¢ = 0, so v = v(7%) for any index a, where V* £ 0. Let v;,v, € F.
Suppose that v; is non-constant, then Vv, = AVt?, 1#£0, so since Vv, AVt =0, Vv, AVy; =0 and
vy = vp(vy). Clearly v, = vy(vy), if v»(+) is constant. Therefore, either all the elements of & are constant, or
each element of Z is a function of some non-constant element 0, say (and clearly 6(-) = S*/n(-) for some
choice of a, b). In any case, then v = v(0),v € Z. In particular, v := (d. - V)S/n is a function of 0, and it
follows that

ab

(- V)(de V)" = (- V){F(0)} = V(0)(d - V)0 (47)

is a function of 0, since (d,- V)0 € #. In the same way, it follows that (d.-V)(d;-V)(d.-V)S®/n is a
function of 0, and so on.

Now, one can show that the fundamental set % of scalar invariants must include more than just the
classic invariants, i.e. it is not enough just to require that

VA =V AdY, S§*=8"  n=n, (48)

if one is to deduce that all invariants match in neutrally related states. To see this, let ¥ = {d,(-), Q}
correspond to
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d* = +x*¢, d°=Vi+x'x, (=x°, a=1,2, (49)

and suppose that §.d“-dx, [,8dV, [, ndV match in states X, %" = {d,(-), 2}. Then from Definition 3,
one finds that

d” =d"+ f'(x)e’, where f* = f*(x'), a=12 and [’ =xf(x). (50)
Also,
=1, $'=x', =¥ 5"=-x (51)

Suppose, for the sake of contradiction, that X, 3’ are locally elastically related. Then there exists an in-
vertible y(x) such that (locally)

d,(y(x)) = (Vy)(x)d,(x), (52)

(8" /') (w) = (S /m)(x), (53)

since S*/n is a scalar. Since the S, n match in X and X', and in particular S? = $?! = 1, it follows that
n'(x) = n(x) and hence

§(y) = 8 (x). (54)
Thus, taking those S% that appear in Eq. (51), we deduce that
y(x)=x (55)

for all x € Q. But then, Eq. (52) implies that d,(-) = d,(-) and this contradicts the fact that ¥ # 2.
Remark: 1t is vitally important to realise that generally, there is no elastic deformation mapping Q to
itself, which takes X to 2. To see this, consider neutrally related states, with ¥ = {e*, Q}, X" = {V6(-), Q},
where {e”} is an orthonormal basis, the functions 6 are independent and det(V6“) = 1 but otherwise they
are arbitrary, and Q is the unit cube. Also, suppose that there is an elastic deformation y, which takes 2’ to
¥, for contradiction. Then, since d*(y(x)) = F~T(x)d" (x),
¢’ = (Vy) "d“(x), so (Vy)'e"=(VO') in 3. (56)

It follows that y* = 6“4+ constant, for each a, which implies that (Q) is a translation of Q (since y(Q) = Q).
But this is false, in general, since 0 = (6“) is arbitrary, except that det(V6“) = I.

7. Lie group structure of crystal states

For illustrative purposes, I work with crystal states where each S%/n is constant. Then, the classifying
manifold of X consists of a single point, and so given xo, x; € £, there exists a diffeomorphism u,, defined
on a neighbourhood N, of x, in € such that

d{l(ux()(x)) = V”xo(X)da(X), ”xo(xO) = x(*)’ X € Nxo' (57)

Thus, the lattice vector fields in the neighbourhoods of any two distinct points in 2 may be obtained, one
from the other, by elastic deformation (a result incidental to the proof of the last theorem). Note that

1
VAd = (d"-VAd)d, = (5/n) 3 e N d’ (58)
and taking the divergence

(S /) £ S™ = 0. (59)



G.P. Parry | International Journal of Solids and Structures 38 (2001) 1071-1087 1083

Eq. (59) is the analogue of the Jacobi identity for the structure constants Cf.‘j = —C;‘,. of a three-dimensional
Lie algebra, which is
GGy + CiC + CCL = 0. (60)

To see this, put C,’; = £,,5" /n and check that Eq. (60) reduces to Eq. (59). Now, one can recover a (local)
Lie group from its Lie algebra, and so it is natural to wonder if there is any connection between the lattice
vector fields {d,(-)} and the local Lie group corresponding to the structure constants &;;,S* /n. There is
indeed a connection, and it is made explicit by the construction of Maurer—Cartan forms on the group.
Denote the three group parameters by (X;, X5, X3) = X and solve the following initial value problem for the
variables Df;(t, X), teR

D = ) + exu(8" /m) X*Df, D(0,X) =0. (61)

Here, the dot signifies a partial derivative with respect to the first argument, 7, and I took the general ruse
from Sattinger and Weaver (1986). Now put

a a l A C
07 = emg Dl — 3 (S /n) epcatris DD,
and calculate from Eq. (61) that
0" = e X*(S™/n) 0L,  6(0,X) =0. (62)

It follows that ¢’ is identically zero. Let D' be the vector with components Di(1,X), then
1
VAD = (S“/n) §s,mD’ AD’. (63)

Moreover, D(t,0) = d7t, Dj(1,0) = §7; it follows that det{D"} is positive in a neighbourhood of X =0
and that one can regard the fields as lattice vector fields. So, define a state

2" ={D,(), 2"}, (64)
where D,(X) - D"(X) = 52, X € Q™ C Q. (One can always arrange that Q contains the point X = 0.) Thus,

D’ -V AD*

et S /n = constant. (65)

So from Theorem 3, there is a local diffefomorphism between X and 2. Also, if X is neutrally related to X7,
there is a local diffeomorphism between X' and 2.

It is the vectors D(-) that reflect the group structure. Let the relevant Lie group be denoted ¢, so that
group elements g are parametrised by the points X € Q™ and there is a mapping ¥ (X, Y) which corre-
sponds to the composition of group elements, g(X)g(Y) = g(¥(X,Y)). The mapping ¥ : R*x R® —R?
reflects the associativity of the group operation and is such that the Lie algebra (in R*) deriving from the Lie
product g(X)g(Y)g '(X)g '(Y) is that corresponding to the structure constants &, S /n. The vectors D
are determined by the mapping ¥, and they satisfy

ot
identically in Y. Note that, once the structure constants are given, the construction which starts at Eq. (61)
provides fields {D,(-)}; then solving Eq. (66) for ¥(Y, X) tells us the (composition function for the) group
operation in 4. Moreover, fixing ¥ = Y, in Eq. (59) gives

D (u(X)) = (Vu) " (X)D*(X), (67)
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if one puts
u(X) = ¥(Yo,X), (68)

and writes —T for the inverse transpose of a matrix. Eq. (67) states that the fields D?(-) transform as dual
lattice vector fields in the elastic deformation X — ¥(Y,, X) = u(X), defined by the group composition
function. In the Lie group literature, such fields (forms) are called left-invariant. Knowing D(0) = ¢“, the
canonical basis in R*, and knowing the group composition function ¥ (deriving from the structure con-
stants), the lattice vector fields in 2™ are fixed by the transformation rule (67). Thus, 2™ provides a ca-
nonical form of states which allow neutral deformation; the lattice vector fields are Maurer—Cartan fields
on the group corresponding to (S%/n), the corresponding coordinates are canonical of the first kind in the
terminology of Pontryagin (1955).

Theorem 6. Suppose that X and X' are neutrally related and that each (S® /n) is constant. Then, X is locally
elastically related to a state 2™, where the dual lattice vectors are left invariant under the local Lie group 4
defined above.

Thus, the study of neutral deformations in states, where the lattice components of dislocation density are
constant amounts to a study of mappings between different subsets of the Lie group %.

8. Equilibrium of a perfect crystal which can deform elastically and through slip

I consider a variational problem where lattice vector fields are represented in the form (33), appropriate
to states where the elastic invariant integrals match those in a perfect crystal and recall that the diffeo-
morphism u represents the elastic part of the change of state, and that v represents the slip, or rear-
rangement. So (letting t(Q) — Q),

find inf 2, where 2 = / W((Vu)(Vv)*l)dV, (69)
Q

when W is a non-negative energy density function with w(1) = 0, with symmetry properties appropriate to
a perfect crystal (Chipot and Kinderlehrer, 1988; Fonseca, 1987, Fonseca and Parry, 1992), assuming
displacement boundary conditions y = Ax on the boundary of Q (A4 is a constant matrix). One tries to
minimise Z by choice of the two functions u,v with det(Vv) = 1.

It follows from these assumptions that ¥ is not quasi-convex, so the corresponding function is not lower
semicontinuous, and the minimising sequences may develop oscillations. Information on the minimising
state is stored in the corresponding Young measure (Young, 1942; Tartar, 1979) — this is a field of prob-
ability measures which holds enough information that the limit of continuous functions (of sequences that
oscillate) may be calculated. In the present context, it is the lattice vectors given by Eq. (33) that may
oscillate; the set of lattice vectors takes values in the space of 3 x 3 matrices with positive determinant,
M3, so the relevant Young measure is a field of probability measures u, (M), M € M?°, x € Q. The
limiting value of the continuous function representing the Cauchy stress, defined by

a(M) ! (aW (M)>MT (70)

T detM \ oM
is then given by

o) = [ an)an o), ()
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and a calculation given in Fonseca and Parry (1992) shows that
a(x) is isotropic for almost all x € Q. (72)

Thus, 6(x) = Al, where [ is the identity matrix, and the function A turns out to be the convex minorant of
the ‘subenergy’ function inf{W(M); det M = ¢}, introduced by Ericksen and Flory.

It is worth noting that the structure of the neutrally related states (not just the particular case considered
above) is ‘stable’ in the sense that the (L weak *) limit of a sequence of states neutrally related to some X, is
also neutrally related to ~. This ‘weak closure’ of the neutrally related states is derived from Murat and
Tartar’s div—curl lemma (Fonseca and Parry, 1992).

9. Defective crystallography

I shall show how to construct a discrete set of points which seems to be naturally associated with
the continuum model of interest, in the case where the dislocation density tensor is constant throughout 2
and equals either (i) zero or (i) Av ® v for some number 4, vector v. In fact, since case (i) just represents
the case of perfect crystal (as far as constructing a related lattice is concerned), I focus just on case (ii).
As mentioned earlier, this construction is to motivate the choice of symmetry group for the continuum
model.

The simplest mechanical problem for a defective crystal (with some S*/n # 0) would be a variational
problem with energy density having the symmetry group deriving from the appropriate discrete set of
points, with lattice vectors having elastic invariants consistent with constant (S /n) equal to iv ® v. Here, I
indicate how ideas of Thurston (1997) are instrumental in constructing the relevant discrete set of points,
but leave the associated variational problem aside (one would guess that non-zero S /n would lead to non-
trivial shear strength, since by Arnol’d’s work, [, S’ dV # 0 implies that dislocation lines are knotted
around one another, this knottedness is preserved in neutrally related states, and so the material cannot
rearrange in arbitrary directions, thereby relaxing the shear stresses).

First of all, a set of points is generated from an arbitrary initial point x, in the following way. Define the
(exponential) mapping x — exp,(x) by

exp,(x) = x(1), (73)
where x(¢) satisfies
x(t) = d,(x(2)), x(0) = xo. (74)

Thus, x, generates three points x¢ = exp,(x,), the three points x¢ generate nine points x§* = exp,(x¢), and
so on. So the iterations correspond to flow (through time 1) along the integral lines of the three lattice
vectors. Note that the iteration is an “elastic invariant procedure’; it is an easy calculation to show that if
the analogous iteration is carried out for lattice vector fields elastically related to d,(x), then there is the
obvious correspondence of the relevant iterates.

Moreover, when (S /n) = v ® v, one deduces from Eq. (39) that

1
d’ :e“+§/1v“(v/\x), (75)
and calculates that

d,=e,—=2vAx-e,)v. (76)

N —
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Solving Eq. (66) for the composition function, it turns out that

1
P(xy)=x+y+ov(v-xAp), (77)
so that
1
(e, y) :ea+y+§2v(ea “XAY). (78)

The exponential mapping, in this case, derives from
1
x(t)=e,— zi(v AX-e,)v (79)

and if x(0) = y, one deduces that
exp,(y) = ¥(es, y)- (80)

So the iteration procedure, which is exponentiation, translates to group multiplication by an element which
corresponds to a (canonical) basis vector.

Let S(2) be the set of points obtained by forward and backward iteration of x, = 0. It follows, from
Eq. (80), that S(2) is a subgroup of the relevant Lie group, ¢ say; it is the subgroup generated by the three
elements corresponding to ey, e, e;. One expects that S(2) is an infinite group, and it is natural to ask if
there is a minimum separation between its elements (in traditional crystallography, the minimum separa-
tion property of a regular array of atoms is what gives the so-called ‘crystallographic restriction’ that only
certain rotational symmetries are possible).

In the general case (with no restriction on the constants (S“°/n)), one might as a first step try to cha-
racterise the particular ($°/n) which produce subgroups I' of % with the minimum separation property
(which I refer to as discrete subgroups, henceforward). Further, one might try to characterise such discrete
subgroups, and ask if there is a relation between the geometrical symmetry of the corresponding set of
points and the subgroup itself. These are the kinds of questions that Thurston (1997) addresses and answers
conditional on one extra assumption:

Assumption. The subgroup I' is generated by elements which are close to the identity.

In physical terms, this is an assumption that ‘atoms’ of the structure which are close to the atom at the
origin generate all other atoms, by the relevant analogue of translation in a crystal lattice (which is the
iteration procedure described above).

Thurston shows that the group ¢ must be nilpotent, in this case, and this gives a restriction on the values
of the dislocation density tensor. This restriction (in the three-dimensional case that is of concern) is
precisely that (S%°/n) is either (i) zero or (ii) Av ® v, for some number A, vector v and that is what motivated
the consideration of case (ii), above.

After Thurston, it seems that a classification of discrete structures associated with continuum models of
defective crystals is possible, and my opinion is that this study must precede any serious attempt to analyse
variational problems or thermodynamical issues in this context.
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